3.418 \(\int \frac{\cot (e+f x)}{(a+b \sec ^2(e+f x))^{3/2}} \, dx\)

Optimal. Leaf size=100 \[ \frac{\tanh ^{-1}\left (\frac{\sqrt{a+b \sec ^2(e+f x)}}{\sqrt{a}}\right )}{a^{3/2} f}-\frac{b}{a f (a+b) \sqrt{a+b \sec ^2(e+f x)}}-\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b \sec ^2(e+f x)}}{\sqrt{a+b}}\right )}{f (a+b)^{3/2}} \]

[Out]

ArcTanh[Sqrt[a + b*Sec[e + f*x]^2]/Sqrt[a]]/(a^(3/2)*f) - ArcTanh[Sqrt[a + b*Sec[e + f*x]^2]/Sqrt[a + b]]/((a
+ b)^(3/2)*f) - b/(a*(a + b)*f*Sqrt[a + b*Sec[e + f*x]^2])

________________________________________________________________________________________

Rubi [A]  time = 0.147423, antiderivative size = 100, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 6, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.261, Rules used = {4139, 446, 85, 156, 63, 208} \[ \frac{\tanh ^{-1}\left (\frac{\sqrt{a+b \sec ^2(e+f x)}}{\sqrt{a}}\right )}{a^{3/2} f}-\frac{b}{a f (a+b) \sqrt{a+b \sec ^2(e+f x)}}-\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b \sec ^2(e+f x)}}{\sqrt{a+b}}\right )}{f (a+b)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[Cot[e + f*x]/(a + b*Sec[e + f*x]^2)^(3/2),x]

[Out]

ArcTanh[Sqrt[a + b*Sec[e + f*x]^2]/Sqrt[a]]/(a^(3/2)*f) - ArcTanh[Sqrt[a + b*Sec[e + f*x]^2]/Sqrt[a + b]]/((a
+ b)^(3/2)*f) - b/(a*(a + b)*f*Sqrt[a + b*Sec[e + f*x]^2])

Rule 4139

Int[((a_) + (b_.)*((c_.)*sec[(e_.) + (f_.)*(x_)])^(n_))^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_.), x_Symbol] :> With
[{ff = FreeFactors[Sec[e + f*x], x]}, Dist[1/f, Subst[Int[((-1 + ff^2*x^2)^((m - 1)/2)*(a + b*(c*ff*x)^n)^p)/x
, x], x, Sec[e + f*x]/ff], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[(m - 1)/2] && (GtQ[m, 0] || EqQ[
n, 2] || EqQ[n, 4] || IGtQ[p, 0] || IntegersQ[2*n, p])

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 85

Int[((e_.) + (f_.)*(x_))^(p_)/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Simp[(f*(e + f*x)^(p +
 1))/((p + 1)*(b*e - a*f)*(d*e - c*f)), x] + Dist[1/((b*e - a*f)*(d*e - c*f)), Int[((b*d*e - b*c*f - a*d*f - b
*d*f*x)*(e + f*x)^(p + 1))/((a + b*x)*(c + d*x)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && LtQ[p, -1]

Rule 156

Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :>
 Dist[(b*g - a*h)/(b*c - a*d), Int[(e + f*x)^p/(a + b*x), x], x] - Dist[(d*g - c*h)/(b*c - a*d), Int[(e + f*x)
^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\cot (e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{1}{x \left (-1+x^2\right ) \left (a+b x^2\right )^{3/2}} \, dx,x,\sec (e+f x)\right )}{f}\\ &=\frac{\operatorname{Subst}\left (\int \frac{1}{(-1+x) x (a+b x)^{3/2}} \, dx,x,\sec ^2(e+f x)\right )}{2 f}\\ &=-\frac{b}{a (a+b) f \sqrt{a+b \sec ^2(e+f x)}}+\frac{\operatorname{Subst}\left (\int \frac{a+b-b x}{(-1+x) x \sqrt{a+b x}} \, dx,x,\sec ^2(e+f x)\right )}{2 a (a+b) f}\\ &=-\frac{b}{a (a+b) f \sqrt{a+b \sec ^2(e+f x)}}-\frac{\operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+b x}} \, dx,x,\sec ^2(e+f x)\right )}{2 a f}+\frac{\operatorname{Subst}\left (\int \frac{1}{(-1+x) \sqrt{a+b x}} \, dx,x,\sec ^2(e+f x)\right )}{2 (a+b) f}\\ &=-\frac{b}{a (a+b) f \sqrt{a+b \sec ^2(e+f x)}}-\frac{\operatorname{Subst}\left (\int \frac{1}{-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+b \sec ^2(e+f x)}\right )}{a b f}+\frac{\operatorname{Subst}\left (\int \frac{1}{-1-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+b \sec ^2(e+f x)}\right )}{b (a+b) f}\\ &=\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b \sec ^2(e+f x)}}{\sqrt{a}}\right )}{a^{3/2} f}-\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b \sec ^2(e+f x)}}{\sqrt{a+b}}\right )}{(a+b)^{3/2} f}-\frac{b}{a (a+b) f \sqrt{a+b \sec ^2(e+f x)}}\\ \end{align*}

Mathematica [F]  time = 6.81818, size = 0, normalized size = 0. \[ \int \frac{\cot (e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx \]

Verification is Not applicable to the result.

[In]

Integrate[Cot[e + f*x]/(a + b*Sec[e + f*x]^2)^(3/2),x]

[Out]

Integrate[Cot[e + f*x]/(a + b*Sec[e + f*x]^2)^(3/2), x]

________________________________________________________________________________________

Maple [B]  time = 0.512, size = 9693, normalized size = 96.9 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(f*x+e)/(a+b*sec(f*x+e)^2)^(3/2),x)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cot \left (f x + e\right )}{{\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)/(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="maxima")

[Out]

integrate(cot(f*x + e)/(b*sec(f*x + e)^2 + a)^(3/2), x)

________________________________________________________________________________________

Fricas [B]  time = 2.16591, size = 3750, normalized size = 37.5 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)/(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="fricas")

[Out]

[-1/8*(8*(a^2*b + a*b^2)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)^2 - (a^2*b + 2*a*b^2 + b^3 +
 (a^3 + 2*a^2*b + a*b^2)*cos(f*x + e)^2)*sqrt(a)*log(128*a^4*cos(f*x + e)^8 + 256*a^3*b*cos(f*x + e)^6 + 160*a
^2*b^2*cos(f*x + e)^4 + 32*a*b^3*cos(f*x + e)^2 + b^4 + 8*(16*a^3*cos(f*x + e)^8 + 24*a^2*b*cos(f*x + e)^6 + 1
0*a*b^2*cos(f*x + e)^4 + b^3*cos(f*x + e)^2)*sqrt(a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)) - 2*(a^3*cos
(f*x + e)^2 + a^2*b)*sqrt(a + b)*log(2*((8*a^2 + 8*a*b + b^2)*cos(f*x + e)^4 + 2*(4*a*b + 3*b^2)*cos(f*x + e)^
2 + b^2 - 4*((2*a + b)*cos(f*x + e)^4 + b*cos(f*x + e)^2)*sqrt(a + b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)
^2))/(cos(f*x + e)^4 - 2*cos(f*x + e)^2 + 1)))/((a^5 + 2*a^4*b + a^3*b^2)*f*cos(f*x + e)^2 + (a^4*b + 2*a^3*b^
2 + a^2*b^3)*f), -1/8*(8*(a^2*b + a*b^2)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)^2 - 4*(a^3*c
os(f*x + e)^2 + a^2*b)*sqrt(-a - b)*arctan(1/2*((2*a + b)*cos(f*x + e)^2 + b)*sqrt(-a - b)*sqrt((a*cos(f*x + e
)^2 + b)/cos(f*x + e)^2)/((a^2 + a*b)*cos(f*x + e)^2 + a*b + b^2)) - (a^2*b + 2*a*b^2 + b^3 + (a^3 + 2*a^2*b +
 a*b^2)*cos(f*x + e)^2)*sqrt(a)*log(128*a^4*cos(f*x + e)^8 + 256*a^3*b*cos(f*x + e)^6 + 160*a^2*b^2*cos(f*x +
e)^4 + 32*a*b^3*cos(f*x + e)^2 + b^4 + 8*(16*a^3*cos(f*x + e)^8 + 24*a^2*b*cos(f*x + e)^6 + 10*a*b^2*cos(f*x +
 e)^4 + b^3*cos(f*x + e)^2)*sqrt(a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)))/((a^5 + 2*a^4*b + a^3*b^2)*f
*cos(f*x + e)^2 + (a^4*b + 2*a^3*b^2 + a^2*b^3)*f), -1/4*(4*(a^2*b + a*b^2)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*
x + e)^2)*cos(f*x + e)^2 + (a^2*b + 2*a*b^2 + b^3 + (a^3 + 2*a^2*b + a*b^2)*cos(f*x + e)^2)*sqrt(-a)*arctan(1/
4*(8*a^2*cos(f*x + e)^4 + 8*a*b*cos(f*x + e)^2 + b^2)*sqrt(-a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/(2*
a^3*cos(f*x + e)^4 + 3*a^2*b*cos(f*x + e)^2 + a*b^2)) - (a^3*cos(f*x + e)^2 + a^2*b)*sqrt(a + b)*log(2*((8*a^2
 + 8*a*b + b^2)*cos(f*x + e)^4 + 2*(4*a*b + 3*b^2)*cos(f*x + e)^2 + b^2 - 4*((2*a + b)*cos(f*x + e)^4 + b*cos(
f*x + e)^2)*sqrt(a + b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2))/(cos(f*x + e)^4 - 2*cos(f*x + e)^2 + 1)))
/((a^5 + 2*a^4*b + a^3*b^2)*f*cos(f*x + e)^2 + (a^4*b + 2*a^3*b^2 + a^2*b^3)*f), -1/4*(4*(a^2*b + a*b^2)*sqrt(
(a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)^2 + (a^2*b + 2*a*b^2 + b^3 + (a^3 + 2*a^2*b + a*b^2)*cos(f
*x + e)^2)*sqrt(-a)*arctan(1/4*(8*a^2*cos(f*x + e)^4 + 8*a*b*cos(f*x + e)^2 + b^2)*sqrt(-a)*sqrt((a*cos(f*x +
e)^2 + b)/cos(f*x + e)^2)/(2*a^3*cos(f*x + e)^4 + 3*a^2*b*cos(f*x + e)^2 + a*b^2)) - 2*(a^3*cos(f*x + e)^2 + a
^2*b)*sqrt(-a - b)*arctan(1/2*((2*a + b)*cos(f*x + e)^2 + b)*sqrt(-a - b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x
+ e)^2)/((a^2 + a*b)*cos(f*x + e)^2 + a*b + b^2)))/((a^5 + 2*a^4*b + a^3*b^2)*f*cos(f*x + e)^2 + (a^4*b + 2*a^
3*b^2 + a^2*b^3)*f)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cot{\left (e + f x \right )}}{\left (a + b \sec ^{2}{\left (e + f x \right )}\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)/(a+b*sec(f*x+e)**2)**(3/2),x)

[Out]

Integral(cot(e + f*x)/(a + b*sec(e + f*x)**2)**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cot \left (f x + e\right )}{{\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)/(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="giac")

[Out]

integrate(cot(f*x + e)/(b*sec(f*x + e)^2 + a)^(3/2), x)